.
Location: 35 km SW from Halls Creek, Western Australia, Australia
Level 2, 46 Ventnor Ave, West PerthPerthWestern Australia, Australia6005
Stay on top of the latest gold discoveries. Examine the latest updates on drilling outcomes spanning various commodities.
Mining scale, mining and mill throughput capaciites.Full profiles of select mines and projects.
Shaft depth, mining scale, backfill type and mill throughput data.Full profiles of select mines and projects.
Equipment type, model, size and quantity.Full profiles of select mines and projects.
Camp size, mine location and contacts.Full profiles of select mines and projects.
Gold mineralization in the Nicolson’s Find area is structurally controlled within the 400 m wide NNE trending dextral strike slip Nicolson’s Find Shear Zone (NFSZ) and is hosted within folded and metamorphosed turbiditic greywackes, felsic volcaniclastics, mafic volcanics and laminated siltstones and mudstones. This zone forms part of a regional NE-trending strike slip fault system developed across the Halls Creek Orogen (HCO). The NFSZ comprises a NNE-trending anastomosing system of brittle-ductile shears, characterised by a predominantly dextral sense of movement. The principal shear structures trend NNE to N-S and are linked by NW, and to a lesser extent, by NE shears. Individual shears extend up to 500m along strike and overprint the earlier folding and penetrative cleavage of the HCO. The overall geometry of the system is characterized by right step-overs and bends/jogs in the shear traces, reflecting refraction of the shears about the granite contact. Within this system, the NW- striking shears are interpreted as compressional structures and the NE striking shears formed within extensional windows. Mineralization is primarily focussed along NNE trending anastomosing systems of NNE-SSW, NW-SE and NE-SW oriented shears and splays. The NNE shears dip moderately to the east, while the NW set dips moderately to steeply to the NE. Both sets display variations in dip, with flattening and steepening which result in a complex pattern of shear intersections. Mineralisation is strongly correlated with discontinuous quartz veining and with Fe-Si-K alteration halos developed in the wall rocks to the veins. The NE shears are associated with broad zones of silicification and thicker quartz veining (typically white, massive quartz with less fracturing and brecciation); however, these are typically poorly mineralized. The NW-trending shears are mineralized, with the lodes most likely related to high fluid pressures with over-pressuring and failure leading to vein formation. Although the NE structures formed within the same shear system, the quartz veining is of a different generation to the mineralized veins. Individual shears within the system display an increase in strain towards their centres and comprise an anastomosing shear fabric reminiscent of the pattern on a larger scale.
- subscription is required.