.
Location: 98 km SW from Amman, Jordan
P.O. Box: 941967AmmanJordan11194
Stay on top of the latest gold discoveries. Examine the latest updates on drilling outcomes spanning various commodities.
Mining scale, mining and mill throughput capaciites.Full profiles of select mines and projects.
Shaft depth, mining scale, backfill type and mill throughput data.Full profiles of select mines and projects.
Equipment type, model, size and quantity.Full profiles of select mines and projects.
Camp size, mine location and contacts.Full profiles of select mines and projects.
Albemarle has a 50% interest in (JBC).
- subscription is required.
Supersaturated with halite, the Dead Sea has an annual negative water balance (i.e., the sea level drops), which is a result of the diversion of fresh water that would normally drain into the Dead Sea. The water deficit by volume is greater than appears as the water level falls because of the coinciding salt precipitation on the sea floor. The water balance is complicated and not well understood because of the variations in freshwater influx, variable evaporation rates, and uncertain subsurface inflow. The evaporation rate of a brine surface decreases with the increase in the amount of dissolved salts and is not comparable to the same evaporation rate of a body of fresh water under the same conditions.The Dead Sea is the world's saltiest natural lake with a definite chemical stratification. The Dead Sea brine solution contains high concentrations of ions compared to that of regular sea water and has an unusually high amount of magnesium and bromine and low amounts of carbonate and sulfate.The relative ionic composition of the brine changes through the years because of continual evaporation, ongoing massive salt deposition, and the reinjection of the dense end brines in the south. End-brine reinjection has a local effect on halite saturation and ion/cation chemistry near the southern end of the north basin. The change in brine chemistry generally changes the solubility of evaporitic salt and brine physical properties (i.e., saturation, heat capacity, and viscosity).Wisniak [2002] reports that an estimated 900 MMt of bromine exists in the Dead Sea. The reason for the high levels of bromine found in the water is not well understood, but the salt brines are believed to have formed during the Tertiary period. The evaporation ponds demonstrate the bromide-enrichment process that is theorized to have occurred many years ago and on a much larger scale. Residual brines are extremely rich in bromide. The feedbrine has a specific gravity of 1.2472 and contains 5,037 parts per million (ppm) of bromide. After controlled evaporation occurs in the southern basin ponds following the precipitation of halite and carnallite, the residual brine has a specific gravity of 1.3412 and 8,742 ppm of bromide [JBC production reports].