Zgounder Expansion Project

Click for more information



Mine TypeOpen Pit & Underground
  • Silver
Mining Method
  • Truck & Shovel / Loader
  • Drift & Fill
  • Longhole stoping
  • Transverse stoping
  • Longitudinal stoping
Backfill type ... Lock
Production Start... Lock
Mine Life... Lock
SnapshotOn February 22, 2022 the Aya Gold & Silver completed a Feasibility Study to expand the Zgounder Silver Mine from 700 tpd to 2,700 tpd capacity.

Expanded operations will combine:
- 2,000 tpd flotation-CIP plant and 700 tpd flotation-cyanidation plant;
- Open-pit & UG operations.

As end Q2-2023, Construction of the processing plant was 40% complete and construction of the tailing storage facility was 55% complete; the power line and electrical substations progressed to 27% completion.

At the end of Q1-2024, construction of the plant and surface infrastructure continued to track on budget. Overall, the expansion project was 89% complete.
Related AssetZgounder


Aya Gold & Silver Inc. 100 % Indirect
Zgounder Millenium Silver Mining S.A. (operator) 100 % Direct
Aya Gold & Silver Inc. owns 100% of Zgounder Millennium Silver Mine S.A., which owns the Zgounder property.



- subscription is required.

Deposit type

  • Vein / narrow vein
  • Epithermal
  • Sediment-hosted


Zgounder is a Neoproterozoic age, sedimentary rock-hosted, low-sulphidation epithermal silver deposit.

The Zgounder Silver Deposit is cross-cut by fractures of variable orientations. There are at least four (4) fracture systems:
1. Late sub-vertical E-W fractures and shear zones;
2. N-S fractures/faults dipping steeply to the east;
3. NNE-NNW-oriented system dipping 60° at a strike of 75°E; and
4. A sub-horizontal system of fractures oriented NNE and NNW, which displaced the Brown Formation to the north with depth (Bounajma, 2002).

The Zgounder Deposit formed during two (2) distinct stages of hydrothermal fluid alteration and mineralisation (Essaraj et al., 1998, 2016, 2017):
-Deposition of quartz with minor biotite and As-Co minerals from a variety of H2O-CO2-CH4 rich fluids in equilibrium with the metasedimentary host rocks. The fluids were at high temperatures (400ºC to 450°C) over a wide range of pressures, during the early brittle deformation of the Brown Formation, following emplacement of the Askaoun Granite; and

-The main phase of (Cu-Zn)-Ag (Hg) mineral deposition. Silver deposition occurred following crystallization of quartz-sphalerite-chalcopyrite veins, but the Cu-Zn and Ag(Hg) mineralising fluids were NaCl-CaCl2 brines at minimum temperatures of about 160°C to 200°C, during a period of hydrothermal albitization.

The Zgounder silver mineralisation occurs at the top of the Brown Formation (sandstone), predominantly along the contact and within the dolerite sill. The economic silver concentrations at Zgounder are present mainly as vertical bodies, complex clusters, shear zones, and veinlets, and at the intersection of the E-W and N-S fractures, though preferentially at the contact zones between schist and dolerite (Petruk, 1975; Popov et al., 1989). Native silver occurs in complex sets of microfractures, mainly at intersections with sulphide veinlets, and locally accompanied by chloriterich alteration. Small Ag grains (average size = 50 µm) occur in corrosion zones of early sulphides or disseminated within the schist and dolerite.

According to Marcoux et al. (2015), the paragenetic sequence shows two successive stages of mineralisation: 1) an early Fe–As stage and 2) an Ag-bearing polymetallic (Zn–Pb–Cu–Hg) stage. The early-stage mineralisation is composed of pyrite (70.3%) and arsenopyrite (6.1%). Pyrite shows rare silver inclusions (20 µm). The late polymetallic stage of mineralisation consists of dominantly sphalerite (17.9% of the mineralised material). Electronic microprobe data suggest the presence of two generations of sphalerite: an iron-free generation (<1% Fe) and an iron-rich generation (up to 8% Fe). Silver has not been detected in the sphalerite. Chalcopyrite is rare (1.8% of the mineralised material), carrying very rare Ag-poor grey copper patches (<40 µm), and Ag-free galena (2.3% of the mineralised material).

Native silver is by far the most common silver mineral, representing 1.07% of mineralised material concentrate, and 65% to 90% of Zgounder silver. The native silver is Ag–Hg amalgam, rather than pure silver, forming inclusions 25 µm to 480 µm in size (average 150 µm to 250 µm). Electronic microprobe analyses (Marcoux and Wadjinny, 2005) revealed presence of two (2) generations of large Ag-rich patches containing 85% to 95% Ag (average structural formula Ag17Hg), which likely corresponds to remobilisation slightly post-dating the major silver mineralisation event. The latter is characterised by smaller silver blebs containing 72% to 80% Ag (Ag5Hg, similar to that of eugenite), which represent the majority of the native silver mineralisation at Zgounder. Native silver patches show irregular variation of Hg grade and grain size (up to 1,920 µm), and carry myriads of native silver inclusions (<5 µm). Small patches of polybasite (Ag16Sb2S11) and pearceite (Ag16As2S11) are rare. Tennantite and tetrahedrite are very rare phases. Silver contents are variable, but low (average: 4% Ag). Acanthite (Ag2S) is the main silver sulphide, but is much less abundant than native silver and contains inclusions of native silver (Marcoux et al., 2015).

Tension gashes originally trapped the silver mineralisation within a NNE-oriented shear zone affecting the shale-sandstone beds (Brown Formation) that contain anomalous Ag values. The silver was likely remobilised by E-W oriented structures forming isolated Ag-mineralised lenses and fissures. The silver mineralisation extends laterally over 1,000 m and dips sub-vertically to the south. Vertical mineralised zones are offset by sub-horizontal faults with a northward movement of 10 m to 30 m, creating steps or blocks of mineralisation (Bounajma, 2002).

Based on lead isotope ratios (²°6Pb/²°4Pb = 17.89 and ²°7Pb/²°4Pb = 15.57) measured on galena grains from the polymetallic stage of silver mineralisation, the calculated age for the Zgounder Silver Deposit is approximately 510 Ma (Marcoux and Wadjinny, 2005), using the Stacey and Kramers (1975) model. The Zgounder lead isotopic ratios are similar to those measured at Imiter (²°6Pb/²°4Pb: ˜18.10; ²°7Pb/²°4Pb ˜15.5), with a mineralisation age of approximately 550 Ma (LateProterozoic; Pasava, 1994; Cheilletz et al., 2002). The similar ages of Zgounder and Imiter (eastern Anti-Atlas, Morocco), imply that the former is another example of a Neoproterozoic epithermal deposit in the Anti-Atlas of Morocco (Baroudi et al., 1999; Essarraj et al., 1998).



- subscription is required.

Mining Methods


- subscription is required.


Crushers and Mills


- subscription is required.



- subscription is required.


Silver koz 64,729
All production numbers are expressed as metal in doré.

Operational metrics

Daily ore mining rate  ....  Subscribe
Daily processing capacity  ....  Subscribe
Annual ore mining rate  ....  Subscribe
Waste tonnes, LOM  ....  Subscribe
Ore tonnes mined, LOM  ....  Subscribe
Total tonnes mined, LOM  ....  Subscribe
Tonnes processed, LOM  ....  Subscribe
* According to 2021 study.

Production Costs

Cash costs Silver USD  ....  Subscribe
All-in sustaining costs (AISC) Silver USD  ....  Subscribe
Assumed price Silver USD  ....  Subscribe
* According to 2021 study / presentation.

Operating Costs

OP mining costs ($/t milled) USD 2.88 *  
UG mining costs ($/t milled) USD  ....  Subscribe
Combined mining costs ($/t milled) USD  ....  Subscribe
Processing costs ($/t milled) USD  ....  Subscribe
G&A ($/t milled) USD  ....  Subscribe
Total operating costs ($/t milled) USD  ....  Subscribe
* According to 2021 study.

Project Costs

MetricsUnitsLOM Total
Initial CapEx $M USD  ......  Subscribe
Sustaining CapEx $M USD  ......  Subscribe
Closure costs $M USD  ......  Subscribe
Total CapEx $M USD  ......  Subscribe
OP OpEx $M USD  ......  Subscribe
UG OpEx $M USD  ......  Subscribe
OP/UG OpEx $M USD  ......  Subscribe
Processing OpEx $M USD 163.5
Transportation (haulage) costs $M USD 9.7
G&A costs $M USD 51.5
Total OpEx $M USD  ......  Subscribe
Mining Taxes $M USD  ......  Subscribe
Income Taxes $M USD  ......  Subscribe
Royalty payments $M USD  ......  Subscribe
Gross revenue (LOM) $M USD  ......  Subscribe
After-tax Cash Flow (LOM) $M USD  ......  Subscribe
Pre-tax NPV @ 5% $M USD  ......  Subscribe
After-tax NPV @ 5% $M USD  ......  Subscribe
Pre-tax IRR, %  ......  Subscribe
After-tax IRR, %  ......  Subscribe
After-tax payback period, years  ......  Subscribe

Heavy Mobile Equipment


- subscription is required.


Mine Management

Job TitleNameEmailProfileRef. Date
....................... Subscription required ....................... Subscription required Subscription required Aug 17, 2023
....................... Subscription required ....................... Subscription required Subscription required Dec 13, 2021
....................... Subscription required ....................... Subscription required ........... Subscription required Subscription required Aug 17, 2023
....................... Subscription required ....................... Subscription required Subscription required Apr 30, 2021
....................... Subscription required ....................... Subscription required Subscription required Aug 23, 2023

Total WorkforceYear
...... Subscription required 2021


- subscription is required.